If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2s^2+2s-9=0
a = 2; b = 2; c = -9;
Δ = b2-4ac
Δ = 22-4·2·(-9)
Δ = 76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{76}=\sqrt{4*19}=\sqrt{4}*\sqrt{19}=2\sqrt{19}$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{19}}{2*2}=\frac{-2-2\sqrt{19}}{4} $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{19}}{2*2}=\frac{-2+2\sqrt{19}}{4} $
| 4(y+4)=46-2y | | 9a+3(a+3)–a= | | -x+198=42 | | F(x)=9x^2-12x+19 | | (2+i)+(5-5i)=0 | | 4/7k=3/9 | | 31-(3y-8)=5(y+4) | | 6y-5=-53 | | 10+2(x+1)=4x-4(2x-2) | | 25x=÷35x | | w^2+2w+7=0 | | 69-w=261 | | v2+2v+1=0 | | 4=2y+5 | | 10-x=3.10 | | h=-5h/4-5 | | 3w^2-6w+9=0 | | 7x=8=4x+4 | | 2x+5÷1=11 | | v^2-8v+1=0 | | -6x^2+2x+23=2x^2+6 | | 167=-x+4 | | 166x^2=-2x^2+152x-32 | | 5x+7+3x=–8+3x | | 35x+7-6x=15+5x+184 | | –14=–6+4w | | 5x+10=86 | | (x-4)(7-x)=5-x2 | | 6x^2+11x+2=10 | | 61=-y+188 | | (24x+12)/6+2=32 | | 15/10=9/h |